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ABSTRACT: In decentralized task scheduling models, the decision to transfer
load from the most heavily loaded nodes to the most lightly loaded nodes does
not always prove beneficial. Furthermore, the overhead due to information
exchange and load transfer needs to be reduced and the system topology should
notimpose any constraints on the performance. We propose a distributed task
scheduling mode! by using a simple processor architecture and a heuristic
scheduling algorithm based on small message exchanges between nearest
neighbors. Tp:opgh an extensive simulation study, we analyze the proposed
model by taking into account a wide range of practical issues. Comparison with
other schemes reported in the literature reveals the superiority of our model in
terms of various performance measures. The model incurs a reduced overhead
$1;0 }o the information exchange and exhibits an adaptive nature to network
ogy.

1 INTRODUCTION

Inorder to obtain a high performance from a distributed system, the operating
system must be equipped with an efficient strategy for scheduling workload.
The workload fora_dis!ributexl system is characterized by tasks [1] whichcanbe
independent application modules or inter—related sub modules of an
?ghcanon. If an application comprises anumber of communicating tasks, then

communication overhead needs to be reduced and the precedence
constraints have to observed for a faster response time. Scheduling strategies
that assume a priori knowledge of the task characteristics are termed as static
§c_hgdulmg strategies [3]. Static [9] scheduling schemes prove effective in
initial application to system mapping butare less beneficial in a time dependent
environment where load on individual can fluctuate.

Dynamic scheduling strategies, which do not assume a priori knowledge of
the work load, t;.ake mu[) fa;]oox:t ge unpredictable fluctuations in load patterns
across time and space [12]. An efficient dynamic scheduling strategy balances
the workload by transferring some load from the heavily logded processors to
Lightly loaded processors. A large number of such strategies with various
decentralized algorithms [5]{8][15] have been suggested in the literature. Most
of me_,se strategies employ heuristic approaches (6], and probabilistic [15] and
queuing models [11]. Demand driven models are discussed in [10] where
lightly loaded processors initiate requests for load. Load balance in distributed
database systems has been explored in (16]. A number of algorithms are
compared in [17] using a trace driven simulation model. Although
decentralized models have the potential advantages over the centralized
models[17],_they can incur large overhead due to information exchange and
task migration. The optimal scheduling decisions, in the decentralized
algorithms depend on the accuracy and amount of state information and are
hard to obtain.

In this Ppaper, we present a model of dynamic task scheduling and load
balancing for distributed systems. The proposed model is intended for any
Intérconnection structure with the size ranging from a few nodes to hundreds of
nodes. Contrary to the intuitive notion that the load should be migrated from the
most heavily loaded processor to the most lightly processor, we show that if
every processor equalizes its load within its neighborhood, the performance
can be significantly increased. The first objective of our study which
distinguishes it from others is to overcome instability inherent in scheduling
decisions. Instability of scheduling decisions [1]{5][6] is one of major
problems in a decentralized environment where the system state changes
rapidly. The second objective isto consider the physical locations of the system
nodes for collecting state information without increasing the complexity of
message exchanges. Confining the message communication between nearest
neighbors resultsin a symmetric scheduling algorithm which can be applied to
any system topology. Thirdly, we show that a subtle variation in various
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parameters can have dramatic impacts on the performance. In this paper, we
identify those parameters, consider their effects on various performance
measures and prove the efficiency of the model under varying circumstances.
That makes our model general enough to be applicable to more practical
environment. Variations are introduced in the main scheduling algorithm to
allow investigations into the effects of information collection disciplines and
the choice of node for load transfer. The proposed algorithms were analyzed
through an extensive simulation study and compared with ano load balancing
environment as well as load balancing schemes suggested in the literature
[51{17). The proposed algorithms are shown to produce much better
performance in terms of response time, communication overhead, overhead
incurred due to information exchange and processor utilization even under
heavy loading conditions. They are also shown to be insensitive to the
underlying network structure.

In the following section, we present a system architecture model. We discuss
the network and a node mode! with a brief explanation about its functional
units. Section 3 gives a description of the algorithm which employs simple
heuristic techniques combined with a queuing model. Next, we discuss the four
variations in the algorithm. Section 4 discusses the simulation model and
results are given in section 5 and 6.

2 DISTRIBUTED SYSTEM MODEL

A distributed system can be modeled as a collection of processing nodes
connected by a communication network. The nodes contain general purpose
resources such as memories, processors, databases etc. and provide an
execution environment for the tasks entering into the network. The network is
assumed to be homogeneous where all nodes are identical. The model is
described further in the following sections in terms of components which are
used by the task scheduling algorithms,

2.1 Network Model

The network of a distributed system provides high speed communication
channels for direct communication between any pair of nodes. A node needs to
communicate only with its immediate neighbors and take decisions
accordingly. The network mgologies, considered for simulation study are
described in sections 4 and 6.4.

2.2 Node Model

A node in our model is assumed tobe an indep p ing el with
its own local memory and operating system. Each node is connected to other
nodes through bidirectional kigh speed communication channels. For the
scheduling algorithm a node needs a set of functional modules which are
Information Collector/Dispatcher, the Task Scheduler, a set of queues for
holding tasks and a set of Mailboxes for receiving control messages and tasks.
Figure 1 shows the overall functional model of the node in terms of their
interactions. We now briefly describe the function of each module.

2.3 Information Collector/Dispatcher

The ICD (Information Collector/Dispatcher) unit obtains information about
the local load and that of neighboring nodes and keeps this information in a
table which resides in a fast memory named as Link Load Table. In the proposed
algorithms, such information represents the load status of anode and it provides
an estimate of the total service time of all the tasks which have been assigned to
that node for the final execution. The estimated service time of a task, which is
assumed to be known, is a rough prediction of the service demand of a task
including CPU cycles, memory demand and I/O requirements. The ICD
dispatches the information about the local load, which is the sum of the
estimated service times of tasks in the local execution _gllxeue.to the neighboring
nodes for their “view” of this particular node’s load. These messages about the
load status are called Link Load Views. The exchange of Link Load Views can
be done by message passing in two ways. When the Task Scheduler needs to
schedule a task, the ICD collects its Link Load Views from each ICD of the
neighbors. Alternatively, the ICD at each nodes in the system can dispatch its
local load status to all neighbors periodically.

2.4 Task Scheduler
The TS (Task Scheduler) is responsible for deciding whether an incoming

task is to be serviced locally or be transferred to a neighbor. For scheduling, the
TS executes the scheduling algorithms (described in section 3.1) by consulting
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Figure 1. Node Model

the Link Load Table. If the TS decides that a task is to be executed locally, it
schedules that task at the end of the execution. Otherwise the task is put in the
send queue to a neighbor which is considered a suitable choice.

2.5 Send Queue

For each communication link, there is a send queue that maintains all
outgoinguafﬁc.ﬂnemsonmnminminaquuwfaeachﬁnkisbecamepsks
are of different sizes and consequently need variable communication times.
Moreover, the contention at the network channel is another factor that affects
the routing. Send queues are served on the FCFS basis.

2.6 Mail Boxes

Each communication link maintains a dedicated mailbox for receiving
incoming packets. Tasks arriving from outside world and from mailboxes are
handled with equal priority.

2.7 Execution Queues

All tasks which are to be executed locally are kept in the execution queue. The
CPU, serving on the FCFS principle, keeps itself continuously busy as long as
the queue remains non empty. We assume that both CPU and TS operate
concurrently.

3 THE TASK SCHEDULING ALGORITHMS

In this section we first present the basic algorithm and then discuss the four
variations. Wt the Task Scheduler of a node receives a task (locally
generawdmmigrmedﬁomamnhamde),itexecummeschedlﬂingalgmmm
and decides whether the task should be executed locally or it is to be routed toa
neighboring node. The notations that we use are described along with their
e n topolos tedb directed graph, G = (V, E) where

The system ogy is represented by an undi graph, G =(V,E) wi
V= [ll}.....lt\‘l,romprmlst!wsuot‘nodwmd5= (1,2,3,....L} is the set of
links between the nodes. The neighbor of a node is defined as anode at one hop
distance i.e. directly connected. The degree of i-thnode is d; which is also the
number of neighbors of that node. Note that d; isa constant for all the nodes in
a symmetrical (regular) network topology. Let b be the estimated service

time of task k at node j. If j is the neighbor of node i and node j has Q; tasks

9
scheduled to run in ts local quene, then the quantity 2,77 s taken as "Link
=] .
Load View” of neighbor j seen by node i and is denoted as V; . As mentioned
earlier this value is obtained by the Information Collector/Dispatcher for each
link. Let 70 be the expected service time of the newly arrived task at the i—th
node.
3.1 The Main Algorithm

For the algorithm, the i—th node takes the following steps upon arrival of a task.
Step 1. Calculate the Local Load View as

.- $n

b=l
If it is zero i.e. local queue is empty, put the task in local queve.
Otherwise continue.
Step 2. Check the transfer tag of the arrived task.
If its value has reached R, , put the task in the local queue.

Otherwise continue.
Step 3. Obtain Link Load Status information
for each neighbor j of i, calculate Link Load View for link e as
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Table 1: Notations and their meanings
Number of nodes in the network.
Number of edges in the network.
link for node i to neighbor j.
Connectivity of node i.
Number of tasks in the Execution Queue of node j.
Estimated Service time of task k at node j.
Load View of node j seen by node i through link ¢,
Local Load View of node i.
Transfer Limit of a task
Dynamic Load Threshold of node i.
Time period for Periodic Link Load update.
Arrival Rate per node.
Execution Service Rate.
Communication Service Rate of the network channels.

g
Vi=>mn
Step 4. Calculate the Dynamic Load Threshold

4
Qv+
=1

d + 1

Step 5. IfEV? + 17 islessthan TH;,
put the task in the local Execution Queue. Otherwise continue.

Step 6. Select link ¢/ such thatits V is the minimum and less than TH;
Increment the transfer tag of the task by 1.
Put the task in j~th Send Queue.
3.2 Design Objectives for the Proposed Algorithms
The proposed algorithm is fully distributed and simple in nature. The
algorithm and the associated node model is applicable toany network topology.
Also, the proposed h has a number of characteristics which meet the
following important objectives.
icy: The decision toexecute atask locally orremotely is called
Transfer Policy [5]. Approaches using a threshold policy have been suggested
for this purpose [5]1[17] where anode’s load is transferred to another node only
when it exceeds a predefined threshold. In a dynamic environment, where
system states are unpredictable, predefined threshold limits may not be suitable
for all loading conditions. In the algorithm, threshold limits are
dynamically determined by calculating a node’s load relative to its neighbors.
i icy : Decisions about choosing a node for load transfer are
determined by the location policy. Selection of a target node requires
determination of a load index defining the status of that node. As tothe
common practice of considering queue lengths as the estimation of load status
[171, our location policy takes into account the notion of queue weight which
represenlsﬂxesumofﬂlecsﬁmawdsuvicethnuofaumsksinthemady
execution queue. In a realistic environment, tasks are of considerably different
sizes in terms of their service requirements. The accumulative service time of a
queue of longer length filled with small tasks may be less than a shorter queue
with larger tasks. Therefore, queue weight as aload index for the location policy
it;: more precise measurement than merely considering the number of tasks in
queue.

(3)Amount of Information Exchange : The advantage of reducing the amount
of system state information was stressed earlier. Many complex al orithms
have been suggested for maintaining system state information [1]{4](5]. These
schemes are attractive for systems comprised of small numbers of nodes, butas
the system size increases, the collection of information at a global level in a
rapidly changing environment poses serious constrainis on scheduling
decisions.
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(4) Prevention of Task Thrashing ; The tasks are allowed to migrate in the
network before finding a suitable node. Initially anode may transferatask toits
neighbor considering it a suitable choice. However, the neighbor may transfer
the same task to another node finding. As a result, the tasks can go into
thrashing state where they may make a large number of migrations or even
traverse cycles in the network topology without settling down at one node. To
avoid thrashing, a transfer limit, R, , for every task is required. This can be
achieved by attaching a tag to each task. The value of this tag is increment by 1
every time the task is migrated. When this value reaches R, , the task is
executed at that node unconditionally.



(5) Topological Independence: As mentioned earlier, a distributed
application should be independent of network topology [11[13). This feature is
present in our scheme owing to the nearest neighbor communication
requirements for information e: ge and load fer. Therefore, the
algorithm can be implemented on any network topology. The transfer and
location policies in the algorithm are only dependent upon the number of links
(degree) incident to each node.

3.3 Variations in Information Collection and Node Selection

In order to analyze the behavior of a distributed system in view of the above
mentioned objectives, we consider four variations in the scheduling algorithm;
the variations are related to information collection and node selection
procedures. The resulting schemes use the same transfer policy but differ in
location policy and information exchange. The original algorithm will be
}e:ixlned as Fresh Update Best Selection (FBS). The rest of the algorithms are as

ollows.

ERS (Fresh update random selection): For this scheme, the Link Load Views
are updated as in the case of FBS but the transfer policy in step-6 of the
algorithm is implemented by selecting a link randomly among those links
which have Link Load View less than TH (Dynamic Load Threshold). There
are two advantages to this scheme. First the complexity for node selection is
reduced. Second, it avoids overloading of very lightly loaded nodes which may
appear with FBS scheme. The rest of the algorithm remains the same.

B, jodi ion): In this scheme each node transmits the
load status information periodically to all its neighbors after a fixed time
interval T, . The ICD of every node, therefore, periodically communicates with
the ICD’s of neighboring nodes and update their respective load status tables
entries. The scheduling decision remains the same as described in the main
algorithm.

PRS (Periodic update random selection): This scheme is essentially the same
as PBS scheme except in step-6, the algorithm selects a link randomly among
the links having Link Load Views less than the Dynamic Load Threshold TH, .

4 SIMULATION MODEL AND RESULTS

The proposed algorithms were simulated to study their performance. The
simulator was written in *C’ on an Encore Multimax containing 16 CPU’s and
128 megabytes memory. Of prime importance was the accuracy of simulation,
Each data point was obtained by taking the average of a large number of
simulation runs with different random number streams. In each simulation run,
5000 tasks were generated. In addition, the simulator uces all results after
reaching steady state. All results were obtained with 99% confidence interval
with the size of the interval varying up to 5% of the mean value. o

The main network considered for the experiment is a 35 node network with
constant degree 4 and diameter 3. This network is shown in Figure 3 and it is
called Odd graph. This topology is symmetric and possesses a rather high
densityin the sense that itis one of the known existing graphs with large number
of nodes for the given degree and diameter (7). Task generation was modeled as
aPoisson process withaverage arrival rate A tasks/unit—time, which was same
for all the nodes. The execution and communication time of a task were
exponentially distributed with a mean of 1/ju, time—units/task and 1/,
time—units/task, respectively.
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Figure 2. 35 Node Network with Degree = 4 and Diameter = 3.

5 Performance and Comparison of the Proposed Model

Comparisons of four proposed algorithms were carried out by changing
various p such as sy load, communication rate of the network
channels, R, (transfer limit), 7, (load status update period), network
topology and the number of hosts. In order to compare the response times of the
four algorithms on a unified basis, we chose parameters which generate similar
environments. In order to analyze the relative improvements in the response
time, the algorithms were compared with a no load balancing scheme
implemented in the same environment. A comparison with another scheme
reported in the literature as "Lowest” [17], "Shortest” [S] and more intuitively
known as "best choice” scheme, is also included. We refer to this scheme as the

Least Selection scheme since a task is unconditionally transferred to the most
lightly loaded node among all the neighbors. If the local node is the least loaded
among all neighbors, then the task is locally executed. Note that with the
algorithms PBS (Periodic load update) and FBS (Fresh load update) a task is
conditionally transferred to the lowestloaded node. In order to make acomplete
and fair comparison, we also implemented the "Least Selection” scheme with
periodic and fresh load updates. From now onwards, we will refer to these
algorithms as PLS (Periodic load update, Least selection) and FLS (Fresh load
update, Least selection).

5.1 Response Time Comparison

Figure 3 shows the mean response times of all algorithms with varying the
system load. All six algorithms yielded a substantial improvement in response
time when compared to NLB (no load balancing) scheme. Curves for PRS, PBS,
FRS and FBS run abreast in the lower load range. FBS yields better
performance as the load increases. Essentially, the comparison is between three
algorithmsbelonging to the fresh information update class and three algorithms
belonging to the periodic information update class. The comparison scheme
FLS performs better than the PBS and PRS algorithms at low loads but remains
inferior to FBS because, under light loading conditions, the load status of
neighboring nodes is less likely to change between the time the status is
reported and the time a scheduling decision is made. PLS despite having same
degree of accuracy in information gives higher response time when compared
to the random scheme PRS. The performance of the proposed schemes remains
substantially higher even at very high loads. For example, with utilization ratio
exceeding 0.8, FBS yields 45% t0 60% improvement over the no load balancing
scheme and 25% to 28% improvement over FLS. PRS which produces the
worst response time out of all proposed algorithms still gives an improvement
of 2% to 25% over FLS and 40% to 309£?mprovement over PLS. All these
comparisons reveal that the decision in transfer policy is more critical than the
decision in location poli?;.e
. When comparing proposed algorithms among themselves, the
importance of the selection of aneighboring node becomes more apparent. FBS
yields a better response time compared to FRS while PBS performs better than
PRS. The effects of the accuracy of the load status information inherent in each
algorithm are obvious from the curves shown in Figure 3 where both fresh
update (FBS and FRS) algorithms outperform both periodic update (PBS and
PRS) algorithms.
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Fig. 3. Mean response time versus system load

5.2 Analysis of Load Distribution

The standard deviation of the total utilization of all the nodes is an estimate of
"smoothness” of the load distribution over the whole network. In other words, it
represents an variations in actual busy times of all the nodes relative to the
global average. The standard deviations of node utilization for the six
algorithms along with no load balancing scheme are shown in Figure 4.

‘The curve for no load balancing remains essentially constant for low arrival
rates which indicates that there is a considerable number of nodes which remain
idle while their neighbors may be heavily loaded and busy. This results in
higher variations of load (and hence in busyness of nodes) across the whole
network. This discrepancy diminishes for higher arrival rates, as indicated by
the downward trend of the curve. We choose this curve as a reference curve for
all other algorithms since it can provide a basis for comparing other algorithms
in terms of their effectiveness for
“smoothing” load over the network. The curves for all other algorithms
represent variations from the reference curve when load balancing isemployed.
These variations are evaluated with respect to the average load. For a small
load, these magnitudes are significantly large. This is true for the PLS, FLS,

PBS and FBS algorithms as shown in Figure 4. The situation changes as the
average load increases because the fluctuations in load become small and tasks
settle at lightly loaded nodes making the load more balanced.



5.3 Information Collection Overhead

Information exchange incurs overhead due to storage, processing of this
information by the Information Collector/Dispatcher and the messages
generated for this purpose. This overhead is a function of number of messages
generated and can be estimated by the average number of queries per task. Our
objective is not to actually assess this overhead; rather we compare this
overhead for periodic and fresh load update strategies. In Figure 5, average
number of queries per unit-time per node are plotted for FBS, FRS and FLS.
The average numbers of queries made by fresh load update algorithms are
compared with periodic load update pattern when nodes update their Link Load
Views after every 0.2 time units and thus making 5 queries per unit-time. The
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proposed algorithms FBS and FRS again show better performance by inducing
less overhead as compared to FLS. Figure 5 also reveals the advantage of
periodic algorithms at high load and the advantage of fresh update algorithms at
low load. Periodic algorithms have advantage if T, is adjusted according to
load, ranging from 1 time unit at Jow load to 0.125 time units at high load.
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6 SENSITIVITY STUDY

The results presented in the following sections indicate the sensitivity of each
algorithm to different parameters.

6.1 Effect of Communication Rate

Curves of response times versus communication rates at low load and high
load are shown in Figure 7 (a) and Figure 7 (b), respectively. The response time
decreases almost linearly with increased communication rate. Figure 7 (a),
shows that for low communicationrate, the proposed algorithms perform better
than FLS and PLS algorithms. At extremely low communication rate, the
response time of PLS is even poorer than the no load balancing scheme,
whereas the proposed algorithms still yield a better response time. As the
communication rate starts increasing, a rapid improvement in performance is
noticed in all the algorithms.

For communication rate ranging from 4 to 10 tasks/unit-time, the response
time decreases rapidly. By increasing the communication, we note that the
response time starts decreasing at a slower pace. Very little improvement
results when this ratiois increased beyond 5 corresponding to acommunication
rate of 20 tasks/unit-time. Therefore it does not payoff if the communication

rate is increased beyond that. The ettect ot communication rate on response
time at high load is shown in Figure 7 (b). We observe that the proposed
algorithms  outperform FLS and PLS algorithms. The difference in
performance of the proposed algorithms and those of the FLS and PLS
algorithms are even high at low communication rate with PLS and FLS

performing even worse than the no load balancing scheme for communication
rates below 10 tasks/unit—time and 6 tasks/unit-time, respectively.

Besides reducing communication delay in task migration, faster
communication rate reduces contention at the channels. As a result queuing
delays at send queues decrease. With a slow network channel, a task may no
longer find the destination node a suitable choice as the state of the node may
have totally changed when the task finally reaches that node. Generally, all
scheduling algorithms face that problem. Once a task reaches a wrong node,
that node re—schedules that task resulting in an excessive migration of the task.
The better performance of the proposed algorithms, however, can be attributed
to the fact that the decision of sending a task to a neighbor is made by tuning the
dynamic load threshold. Asaresult, the scheduling decisions prove more stable
as compared to PLS and FLS.

6.2 Varying Load Status Update Period

As discussed earlier, information collection overhead can be reduced by
making periodic updates for high load. For ideal performance, theinterval T,
should be tuned according to the system load. But realistically, the arrival
pattern can not be predicted forcing us tochoose aconstant valuefor T, .Witha
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small value for T, , the information is more up to date and the response time
can be as good as that of fresh updates, but at the cost of higher overhead. On the
:g:lu'ary cltlhooxg T, tobe too long results in wrong scheduling decisions. By
yzing the performance of ﬂle)png)osed periodic algorithms (PBS and PR,
and comparing them with PLS, the impact the a%cumcy f)f load stanf)s
information can be studied. The response time of these algorithms are plotted
for various lengths of 7, in Figures 8 (a) and 8 (b) for low and high loads,
respectively. The accuracy of information is critica! for load balancing since it
not only aftects the decision whether atask should be serviced locally, but also
affects the choice of the target node. Since the rule for the former decision is the
same in both the PBS and PRS algorithms, the difference lies in selection of a
target node. In PRS, a task is randomly sent to a neighbor not relying on the
accuracy of load status information for node selection. In contrast, PBS relies
more on the accuracy of information because it has to select a least loaded
neighbor. This effect can be observed from Figure 8(a). With increasing lose in
accuracy of information, the response time of PBS becomes worse than the
response time for PRS. The response time of PBS increases rapidly when T, is
increased beyond 0.4 time units. Note that the utilization ratio for this curve is
0.6 corresponding o an inter-task arrival time of 0.42 time units. Since anode
isrecipient of both externally and internally migrated load, we conjecture that
the value of T, should be less than the inter—arrival time of aggregated task
stream The performance of the PLS remains inferior to both PBS and PRS since
the decisions made by PLS algorithm is more constrained resulting in the
response time which increases linearly with T, .This phenomena is shown in
Figure 8 (b). Both algorithms sustain their superiority over PLS with better
response time even with relatively inaccurate information .

T -
- -
M
E 26— /‘ —
A
N E /0/
‘lf 2.1 /
: _./ --------------- A pBs
L e v B ¢ FRS
s 16—
B A =24 talf
time_unit
T 4 By =dtaak/
I time_unit
2 =1
B o ok o3 o o5 | ok | oM -3
(timo uaite) Tu (LOAD UPDATE PERIOD ) —_—
Fig. 8(b). Effect of load update period at high load

6.3 Sensitivity to Transfer Limit

A situation which should be avoided while using load balancing is “task
thrashing”. Task thrashing occurs when tasks keep on migrating between nodes
without settling down for execution at one node. In the proposed schemes,
parameter R, is included to avoid this situation by putting a limit on the
maximum number of links a task can traverse. Selecting a high value of R,
provides tasks with more opportunities to find a suitable node. A small value
of R, restricts tasks to only a few migrations possibly preventing tasks from
finding a better node. On the other hand, if the tasks are left free to migrate
withoutlimit, they may make a large number of unnecessary migrations. Figure
9 (a) shows response times of all six algorithms for different valuesof R, .The
stability of each algorithm can be observed from Fi; 9 (a).

These results can be interpreted as the accuracy of the scheduling decisions
made by each algorithm. It can be seen that in FRS and FBS with one, two or
three migrations, tasks can find suitable destinations. For five to six migrations,
there is negligible improvement in response time. Increasing the value of R,
beyond eight or nine does not provide anv significant impact on performance
since tasks settle down before reaching the limit. The curves for PLS and FLS
show signs of some thrashing after four or five migrations as the response time
starts increasing.Figure 9 (b) shows same results for a utilization ratio of 0.9.
The phenomena of task thrashing can be easily observed. The response time
deceases to a range of minimum values for each algorithm and then it starts
increasing. This range varies from algorithm to algorithm. For PLS and FLS,
the range is rather small and the increase in response time is sharp indicating a
high degree of thrashing. The second notable observation is how quickly the
response time decreases after reaching a peak value. On the other hand,
thrashing in FBS and FRS is minimum. In PBS and PRS, the tendency of
thrashing is higher and the response time does not improve even if the transfer
limit is increased. For PLS and FLS, a very high degree of thrashing is
noticeable which confirms that thesesalgorithms are less stable. Since R, isan
important parameter for load balancing schemes, these curves alsoprovide a set
of valuesfor R, topreventthrashing and attain the best operating environment
foreachalgorithm. For example, for FBS and FRS, this range is between2 and 5
while for PRS and PBS thisrangeis from 3 to 7.
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6.4 Topological Effects
Since the proposed algorithms use information exchange and load bal

confined to neighbors, these algorithms prove suitable to network topologies
ranging from a totally symmetric network to a random interconnection
structure. The simulation results show that topology has rather little effect on
the performance of these algorithms. In addition to the Odd graph shown
earlier in Figure 2, we considered ring, chordal ring, fully connected and
random topologies, each with 35 nodes. A smaller Odd graph (named as Odd
graph 2) with degree 3 was also simulated. The response times obtained for
FBS,FRS and FLS for these topologies are given in Table II, for utilization ratio
0.6 and 0.9. The parameters chosen were: K, = 4 tasks/unit-time, g, =10
tasks/unit-time, R, =5and T, . To study the variations in the performance of
the algorithms, the accumulative average response times and standard
deviations are also given in the table. The av response times obtained with
the no load balancing scheme are 0.941 and 2.295 for utilization ratios 0.6 and
0.9, respectively.

Overall we can infer from the standard deviation of response times given in
these tables that the proposed algorithms are less sensitive to topology
compared to FLS. Atlow utilizationratio, such as 0.6, FBS proves less sensitive
to topology while for high utilization ratios such as 0.9, FRS shows the least
value of standard deviation showing the least variations. Small value of
standard deviation for FBS and FRS, compared to that of FLS shows the
adaptive nature of the algorithms. It has already been mentioned that Odd graph
gives the best performance and little variations from this value means that the
performance does not d much for other topologies.

‘When analyzing the effect of degree, we can consider the two extreme cases
of a ring network and a fully connected network. Smaller numbers of links
provide a few choices for the task scheduler. Very large number of links gives
more choices for node selection but the probability of a wrong decision also
increases. From Table II, we observe that the response time of the fully
connected network is rather high at utilization ratio 0.6 but becomes the best at
the utilization ration of 0.9. This means that a higher degree of connectivity
proves more beneficial at high loads. Thisis due to the fact that if the diameter is
small as in the case of a fully connected network (along with a higher degree),
the wrong decisions can be rectified more easily. In contrast if the diameter is
very large as in the case of a ring, the chances of recovering from wrong
decisions are less.

The efficiency of th;.%roposed scheme is obvious from the results obtained on
the random network. Theresponse time at utilizationratios 0.6 and 0.9 is only 8
- 9% different from the global average. Comparatively, the standard deviation
computed for FLS is very high.




6.5 Effect of Variable Number of Nodes

The impact of the number of nodes in the network is also evaluated. Again we
only consider fresh load update algorithms FRS and FBS and compare their
performance with FLS. The nodes were connected in the form of aring with the
number of nodes varied from 10 to 100. The value of R, isadjusted for each
configuration; itis set equal to the diameter of the ring. The curves for low load
(utilization ratio = 0.6) and high load ( utilization ratio = 0.9) are shown in
figure 10 (a) and 10 (b). In contrast to earlier studies [17] we observe that the

TABLE II
LESPONSE TIME AND COMMUNICATION OVERHEAD POR VARIOUS TOPOLOGIES
UTILIZATION RATIO =06 UTILIZATION RATIO = 09
TOPOLOGY
FBS FRS | FLS FBS FRS_ | FLS
ODD GRAPH n4sl L1154 2z
2 DAST 04% 1.145 1.222 1433
RING ATI 0.629 1209 1.279 1.1
CHORDARING 517 [GY 1225 129 19%
| RANDOM __ 536 o513 0.650 1.269 1323 1587
PULL CONNEC. 05% 04’ 0.663 1.041 1.198 [ 12 |
AVERAGE 0498 05% 1250 L6
STANDARD DEV. 0033 0059 0.064 0.079 0.051 0.196
aggregated performance of scheduling algorithms does not saturate for

moderate network size (such as 35 nodes). Instead, the proposed scheme
exhibits a sustained performance as the size of the network increases even up to
100 nodes.

We expect that the saturation will occur for a large number of nodes such as
200 to 300. Referring to Figures 10 (a)and 10 (b), we observe that the response
times almost linearly decrease with an increase in the number of nodes for both
values of utilization ratios. At low load, both FBS and FRS maintain their
enhanced performance over FLS. At high load, the difference in performance
becomes significantly large when the number of nodes are varied between }0 o
25. For these curves the transfer limit R, was adjusted asN — 1. By keeping a

high value of R, ,theloadcan diffuse from one part of the network to another.
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Fig. 10 (a). Response time for varying number of nodes at low load

7 Conclusions and Future Work

In this paper we have presented an approach to dynamic task scheduling and
load balancing. An extensive study of our approach under a wide range of
parameters indicates that this approach is applicable to a more practical
environment. The scheduling algorithm supported by some software
components improves the response ime to a great extent by trying to keep the
network nodes equally busy. The exchange of load status information has low
complexity. An interesting trade—off between periodic update to non—periodic
information update is exhibited. The performance of the proposed algorithms
does not degrade when no transfer limit is used. The communication rate of the
network has a major influence on the performance but we showed that further

e sho :im the dapti f algorithms. Even on an
topologies show adaptive nature of our algorithms.
i?rpeogl?l%]rly connected network with different number of links per node, the
algorithms showed very little tendency of making uneven distribution of load.
Although decentralized load batancing algorithms have gained great
popularity, new solutions need to be explored for very large system consisting
of hundreds and thousands of nodes. Fully distributed algorithms use small
amount of information about the state of the system which makes the scope of
scheduling decision very limited. Since gathering large amount of state
information may decrease the accuracy, it becomes more appropriate o collect
small amount of more accurate information. Small systems can yield good
performance with limited information but this may not be true for large

systems. Furthermore, if each node takes autonomous decision, load cannot be

mEg=- GnzOoTLomX z>mE

Fig. 10(b). Response time for varying number of nodes at high load
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fuily balanced at the system level. If the mostly heavily and the most lightly
loaded sections of a large network (with a diameter of the order of logarithm of
the number of processors) are a large distance apart, a fully distributed
algorithm, with limited amount of information may have to executed a number
of times to balance the load among these sections. Despite the fact that fully
distributed algorithms incur less overhead due to message exchange, this
overhead linearly increases with the system size. This may result in a

jonal increase in the average response time. On the other hand,
centralized algorithms do have the potential of yielding optimal performance,
but with alarge system, the global information collection becomes aformidable
task. The storage requirement for maintaining this information also becomes
prohibitively high. Also, such a system is less fault tolerant.

Inanother study [1], we propose anew approach, whichis semi—distributed in
nature, for large systems consisting of hundreds of nodes. In that scheme, we
introduce the notion of sphere of locality where each sphere, with a central
control, is a cluster of nodes. A scheduling algorithm is proposed that is
executed by only a set of nodes, called schedulers which are responsible for
scheduling tasks within their own spheres. A partitioning strategy, based ona
combinatorial structure known as Hadamard Matrix, is suggested for
Hypercube and Bisectional graphs. The partitioning strategy determines an
optimal number of schedulers. The number of schedulers needs to small in
order to have a low overhead. At the same time the schedulers need 1o be
sufficiently enough to effectively manage load within their spheres.
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